Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
2 Département de pathologie [Mondor]
3 U955 Inserm - UPEC - IMRB - VHC/"Viruses-Hepatology-Cancers" [Créteil]
4 EKFZ for Digital Health - Else Kroener Fresenius Center for Digital Health = Else Kröner Fresenius Zentrum für Digitale Gesundheit
5 UKA - Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany]
6 CHIC - Centre d'Histologie, d'Imagerie et de Cytométrie
7 LIPADE (URP_2517) - Laboratoire d'Informatique Paris Descartes
8 CRC (UMR_S_1138 / U1138) - Centre de Recherche des Cordeliers
9 Département de Pathologie [CHU Caen]
10 Institute of Pathology
11 CHU - BREST - Biologie pathologie - CHRU Brest, Pôle de Biologie Pathologie
12 LBAI - Lymphocytes B, Autoimmunité et Immunothérapies
13 Klinik für Gastroenterologie, Hepatologie und Infektiologie
14 IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy.
15 Service d'Anatomo-Pathologie
16 CRI (UMR_S_1149 / ERL_8252 / U1149) - Centre de recherche sur l'Inflammation
17 Hanoï Medical University
18 Bach Mai Hospital [Hanoi]
19 School of Medicine [Kanazawa Medical University]
20 NCHK1 - National Cancer Hospital K1 [Hanoi, Vietnam]
21 CANTHER - Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277
22 Institut de Pathologie [CHU Lille]
23 Department of Laboratory Medicine and Pathology (Mayo Clinic Rochester)
24 CHU Pitié-Salpêtrière [AP-HP]
25 CHU Saint-Antoine [AP-HP]
26 Dr. Rela Institute & Medical Centre [Chennai]
27 Gastrointestinal, Hepatic & Pancreatobiliary Pathology [Cleveland Clinic]
28 Digestive Disease & Surgery Institute [Cleveland Clinic]
29 BCLC - Barcelona Clínic Liver Cancer
30 Hôpital Gui de Chauliac [CHU Montpellier]
31 Institut für Pathologie [Regensburg]
32 Department of Pathology [Singapour]
33 CUHK - The Chinese University of Hong Kong [Hong Kong]
34 Hôpital Claude Huriez [Lille]
35 Département de Pathologie [CHU Rouen]
36 Anatomie et Cytologie Pathologiques [CHU Amiens]
37 CHIMERE - CHirurgie, IMagerie et REgénération tissulaire de l’extrémité céphalique - Caractérisation morphologique et fonctionnelle - UR UPJV 7516
38 Service d'Anatomie et de Cytologie Pathologiques
39 Anatomie et de Cytologie Pathologiques [CHU Grenoble]
40 TIMC - Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525
41 Service de Chirurgie Viscérale et Digestive [CHU Caen]
42 Service de Pathologie [CHU Poitiers]
43 LITEC [Poitiers] - Laboratoire Inflammation, Tissus épithéliaux et Cytokines
44 Service d'Anatomie et de Cytologie Pathologiques [Poitiers]
45 Service d'Hépato-Gastro-Enterologie et Nutrition [CHU Caen]
46 Service d'Oncologie médicale [CHU Henri Mondor]
47 Department of Pathology [Seoul National University Hospital]
48 Service Hépato-gastroentérologie [Hôpital Claude Huriez, Lille]
49 Département de Pathologie [CHU Angers]
50 Department of Pathology [Dallas]
51 Service de chirurgie digestive
52 SSPC - Simplification des soins chez les patients complexes - UR UPJV 7518
53 CHB - Centre hépato-biliaire
54 Internal Medicine
55 UKE - Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf [Hamburg]
56 CHU Reims - Hôpital universitaire Robert Debré [Reims]
57 Department of Pathology [Yale]
58 Service d'imagerie médicale
59 Service d'hépato-gastro-entérologie [APHP Henri Mondor]
60 CHB - Centre Hépato-Biliaire [Hôpital Paul Brousse]
61 Institut de Pathologie
62 Department of Pathology and Immunology [Washington University in St. Louis]
63 Department of Pathology [University of Michigan Medical School, Ann Arbor]
64 Department of pathology [HKU]
65 State Key Laboratory of Liver Research [The University of Hong Kong]
66 Department of Pathology and Medical Biology
67 Service d'anatomie pathologique
68 Department of Internal Medicine [Songkhla]
69 Pathology Department [Songkla]
70 Stanford AIMI Center - Stanford Center for Artificial Intelligence in Medicine and Imaging
71 Department of Pathology [Stanford]
- Fonction : Auteur
- PersonId : 750038
- IdHAL : qinghe-zeng
- ORCID : 0000-0002-1473-8327
- IdRef : 280158157
- Fonction : Auteur
- PersonId : 182073
- IdHAL : christophe-klein
- ORCID : 0000-0001-8015-287X
- Fonction : Auteur
- PersonId : 1347338
- ORCID : 0000-0002-0602-3356
- Fonction : Auteur
- PersonId : 1347339
- ORCID : 0000-0002-6288-8821
- Fonction : Auteur
- PersonId : 1347340
- ORCID : 0000-0002-9013-4728
- Fonction : Auteur
- PersonId : 1347341
- ORCID : 0000-0002-8686-4867
- Fonction : Auteur
- PersonId : 779521
- ORCID : 0000-0003-2803-6606
- Fonction : Auteur
- PersonId : 1347342
- ORCID : 0000-0002-0456-7085
- Fonction : Auteur
- PersonId : 1272193
- ORCID : 0000-0002-0036-909X
- Fonction : Auteur
- PersonId : 825726
- ORCID : 0000-0003-3286-8608
- IdRef : 072240253
- Fonction : Auteur
- PersonId : 1225174
- ORCID : 0000-0002-9014-4950
- Fonction : Auteur
- PersonId : 1168281
- ORCID : 0000-0002-5711-9534
- Fonction : Auteur
- PersonId : 1276791
- ORCID : 0000-0002-8432-3194
- Fonction : Auteur
- PersonId : 762473
- ORCID : 0000-0002-8065-9635
- Fonction : Auteur
- PersonId : 177701
- IdHAL : raffaele-brustia
- ORCID : 0000-0001-6426-9533
- IdRef : 267306601
- Fonction : Auteur
- PersonId : 757187
- ORCID : 0000-0003-0745-7559
- IdRef : 07655130X
- Fonction : Auteur
- PersonId : 766402
- ORCID : 0000-0003-1372-0843
- IdRef : 059911824
- Fonction : Auteur
- PersonId : 1347343
- ORCID : 0000-0002-1467-3148
- Fonction : Auteur
- PersonId : 1347344
- ORCID : 0000-0002-4058-5977
- Fonction : Auteur
- PersonId : 1347345
- ORCID : 0000-0002-1519-0308
- Fonction : Auteur
- PersonId : 820183
- ORCID : 0000-0002-3730-5348
Résumé
Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|