Apprentissage de méthodes itératives pour l’imagerie de contraste de phase des rayons X - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Apprentissage de méthodes itératives pour l’imagerie de contraste de phase des rayons X

Kannara Mom
Bruno Sixou

Résumé

In-line phase contrast imaging can be obtained with X-rays if the beam is sufficiently coherent. Retrieving the phase and absorption from one or several of these images is a non-linear, ill-posed inverse problem, however. Here, we propose a deep learning method to solve this twofold problem from a single intensity measurement. It is based on the unrolling approach, in which an iterative algorithm is "unrolled" into a sequence, and some part of the iterations is replaced with a convolutional neural network. An advantage is that no regularization is needed, only the gradient of the data fidelity term is calculated at each iteration. The network is trained to learn a complete iteration from this information and the current iteration. We apply the method to a gradient descent scheme using smooth total variation regularization (GD-TVϵ) and compare the standard and the unrolling version (DUGD). We show that the unrolled version gives better results quantitatively and qualitatively, and that the computation time is much shorter than the classical iterative version.
Fichier principal
Vignette du fichier
GRETSI2022.pdf (7.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03706103 , version 1 (04-11-2022)

Identifiants

  • HAL Id : hal-03706103 , version 1

Citer

Kannara Mom, Max Langer, Bruno Sixou. Apprentissage de méthodes itératives pour l’imagerie de contraste de phase des rayons X. XXVIIIème Colloque Francophone de Traitement du Signal et des Images (Gretsi 2022), Sep 2022, Nancy, France. ⟨hal-03706103⟩
1311 Consultations
46 Téléchargements

Partager

More