Fusion of estimations from two modalities using the Viterbi's algorithm: application to fetal heart rate monitoring - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Fusion of estimations from two modalities using the Viterbi's algorithm: application to fetal heart rate monitoring

Résumé

The Viterbi’s algorithm allows to estimate latent time seriesaccording to observations in a hidden Markov model. This algorithm canbe used to merge estimations from different modalities as proposed inthis paper. Such a multi-modal estimation is more efficient than mono-modal estimations when the modalities are subject to independent noises.In this paper, this improvement is evaluated in function of noise level ofmodalities. Experiences on toy data and actual signals to estimate the fetalheart rate show that merging modalities will provide better estimations onaverage than using the modalities separately.

Dates et versions

hal-03833633 , version 1 (28-10-2022)

Identifiants

Citer

Rémi Souriau, Julie Fontecave-Jallon, Bertrand Rivet. Fusion of estimations from two modalities using the Viterbi's algorithm: application to fetal heart rate monitoring. ESANN 2021 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Oct 2021, Online event (Bruges), Belgium. pp.623-628, ⟨10.14428/esann/2021.ES2021-61⟩. ⟨hal-03833633⟩
489 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More