Soutenance de thèse de Pierre JACQUET le 09/11/22

La soutenance de thèse de Pierre JACQUET de l'équipe TIMC BCM aura lieu mercredi 9 novembre 2022 à 14h sur le thème :

« Métabolisme des tumeurs :
apport de la modélisation dans la compréhension
de l’adaptabilité spatiotemporelle »

 

bullet Jury :

  • Angélique Stéphanou, Chargée de recherche, CNRS Grenoble, Directrice de thèse
  • Olivier Gandrillon, Directeur de Recherche, CNRS Lyon, Rapporteur
  • Mathilde Badoual, Professeure des Universités, Université Paris-Diderot, Rapporteure
  • Patricia Thébault, Maîtresse de conférences, Université de Bordeaux, Examinatrice
  • Loren Coquille, Maîtresse de conférence, Université Grenoble Alpes, Examinatrice
  • Olivier François, Professeur des Universités, Grenoble INP, Examinateur

 

bullet  Mots clés :  

métabolisme énergétique, effet Warburg, modélisation hybride, simulations

bullet Résumé :

L'effet Warburg souvent présenté dans la littérature comme une caractéristique métabolique intrinsèque du cancer fait l'objet de nombreuses recherches pour comprendre son origine. Pourtant, si cette surproduction d'acide lactique est observée depuis longtemps au sein des tumeurs, elle ne représente qu'une partie des états métaboliques adoptables et adoptés par les cellules cancéreuses. Le travail réalisé pendant cette thèse a eu pour objectif d’apporter des éléments de réponse concernant l'émergence de l'hétérogénéité spatiotemporelle du métabolisme énergétique tumorale. Cette problématique a été abordée au travers d'une approche épistémologique et par la modélisation en étendant un modèle existant fondé sur des données expérimentales. L'effet Warburg et les termes associés comme la glycolyse aérobie, la notion de switch métabolique ou de reprogrammation métabolique sont ainsi remis en question au travers des différences d'interprétation au sein de la littérature et en observant une dérive sémantique et conceptuelle de ces termes depuis les observations d'Otto Warburg en 1956.

Le modèle développé est un modèle hybride, combinaison de formalismes discrets (prise en compte de cellules autonomes et des processus cellulaires associés) et continus (métabolisme, diffusions des substrats qui définissent l'environnement - oxygène, glucose et lactate et l'acidité dont le rôle souvent négligé est mis en lumière dans cette thèse). Il permet de simuler, en 2D (et 3D), un sphéroïde tumoral composé de milliers de cellules ayant leurs caractéristiques propres. Le sphéroïde est un modèle expérimental classiquement étudié qui sert ici de référence et étudié en parallèle au sein de notre équipe à partir de cellules issues de gliomes. Le modèle permet de mettre en évidence au travers de plusieurs simulations, les conséquences sur le tissu tumoral des variations de l'environnement (déplétions passives des substrats, hypoxie cyclique, chocs acides ou déprivation de glucose) et d'apporter ainsi une nouvelle compréhension sur la régulation du métabolisme.

Les résultats obtenus mettent tout d’abord en avant l'importance du couple pyruvate-lactate dans la régulation des voies énergétiques du métabolisme tumoral. L'intégration de l’influence de l’acidité dans le modèle, fondée sur des observations expérimentales récentes, montre qu’elle est un facteur clé de la régulation de ces voies énergétiques. Ainsi la dichotomie respiration/fermentation classiquement présentée dans la littérature n'a pas lieu d'être, les cellules modulant la proportion de ces deux modes de production d'énergie de manière continue, progressive et spatialement hétérogène, à l’opposé d’une bascule rapide et irréversible. De plus, il a émergé une forme de coopération entre cellules pouvant s'apparenter à l'effet Warburg inverse. Il en résulte que l’effet Warburg n'est finalement pas une caractéristique universelle du métabolisme tumoral, mais une manifestation métabolique contextuelle et transitoire. Le paysage métabolique du système cellule-environnement détermine alors dynamiquement la capacité des cellules à survivre aux conditions extérieures et les régulations épigénétiques modulent leur potentiel de déplacement au sein de ce paysage. Sans écarter le rôle important des mutations génétiques au sein des cellules tumorales, les résultats montrent qu'elles ne sont pas systématiquement nécessaires pour faire émerger des modes métaboliques extrêmes et/ou caractérisés comme pathologiques. Ce travail apporte de nouvelles manières d'aborder la question du métabolisme afin d'adopter plus tard, des stratégies thérapeutiques adaptées non seulement aux spécificités tissulaires de chaque patient, mais également de penser une tumeur comme un écosystème complexe ne se limitant pas à sa variété génétique.